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EXECUTIVE SUMMARY 
 
Object detection and classification from videos have been studied and applied in many 
fields. The primary objective is to develop techniques to gather and interpret visual 
information through different discriminant functions.  This research area is particularly 
relevant in transportation for agencies need to obtain and report the traffic volume and 
types of vehicles that travel on their networks.  Also, these data are necessary for traffic 
engineering studies as well as planning studies.  Obtaining traffic counts and types of 
vehicles via videos is more cost effective and safer for the transportation agencies 
compared to traditional methods such as pneumatic tubes.  
 
The assembly of a discriminant function for detection and classification of vehicles is 
addressed in this report. The objective is to combine detection and classification in a 
single algorithm to classify cars and trucks.  To accomplish this, a database containing 
images of cars and trucks was created using recordings from the South Carolina 
Department of Transportation (SCDOT). Specific areas of the video stream were 
extracted as independent images by applying background subtraction using Gaussian 
mixture-based algorithms.  
 
The set of images was then used to train three different models for classification, namely 
Local Binary Patterns (LBP), Haar Cascade Classifier (HCC), and a Convolutional Neural 
Network (CNN). Image extraction and model training were implemented in Python and 
utilized the OpenCV (Open source Computer Vision) Library. 
 
The results obtained from the analysis showed that the detection scheme using image 
subtraction and contouring was 93% accurate in detecting all moving objects in each of 
the frames. The trained models showed that the CNN classifier had a better classification 
accuracy rate (97%) compared to LBP and HCC algorithms. 
 
 
 

 



Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion, 2019                                                                         

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 8 of 31 

CHAPTER 1 

Introduction  
 
1.1 Motivation 

 
Traffic data collection is an elementary and necessary function performed by all 
transportation agencies.  Traffic data is essential to understanding the current travel 
demand and pattern and are needed for the assessment of future developments.  Traffic 
counting is often performed using pneumatic tubes due to their low cost; however, this 
method is unsafe for DOT staff personnel. 
 
There are many non-intrusive technologies (e.g., passive acoustic detectors, ultrasonic 
detectors, microwave and radar detection systems, and video detection systems) that can 
be used for counting traffic and for classifying vehicles.  These non-intrusive technologies 
have been investigated before due to their advantage to collect data off the roadway, and 
thereby, minimize or eliminate some of the safety and maintenance issues associated 
with road tubes.  The SCDOT collects some of its traffic data via videos; however, this 
work is outsourced and presents a costly recurring expense. 
 
This research explores three different methods to count and classify vehicles 
simultaneously: Local Binary Patterns (LBP), Haar Cascade Classifier (HCC), and a 
Convolutional Neural Network (CNN).  The goal is to identify and fine tune a technique 
that can be used by state DOTs and other transportation agencies to obtain traffic data 
more safely and at a lower cost. 

To accomplish the stated goal, a database with two vehicle classes, namely, cars and 
trucks was created using video recordings from the South Carolina Department of 
Transportation.  The database was then used to train three classifiers developed using 
the different techniques mentioned. A discriminant function was developed using 
OpenCV, a computer vision library for processing video images, which combined the 
preprocessing methods and the classifiers for the simultaneous detection and 
classification of cars and trucks.  Lastly, the accuracy of the classifiers was measured 
using the training dataset.  

This report includes a literature review of the techniques that were used to train the 
classifiers, a review of the method used for detecting and extracting objects from the video 
recordings, and a description about the training procedure and testing of the classifiers. 
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CHAPTER 2 

Literature Review  
 
Video object detection 

 
Automated Vehicle Classification (AVC) systems have been developed to assist human 
operators in system operations and surveillance (Boukerche et al., 2017).  Typically, the 
AVC algorithms are incorporated in cameras to help identify different vehicles using the 
plate number, color, or type (Harlow, 2001).   This practice has received a great deal of 
attention in recent years, and its ultimate purpose is to develop robust systems for real-
time classification. 
 
With the development of tools for human face recognition (Jones & Viola, 2001), the 
algorithms used in AVC systems have improved.  However, these techniques still face 
many challenges regarding vehicle diversity, multiplicity, heterogeneous views, and 
lighting conditions, among others.  Authors have proposed various approaches to classify 
vehicles.  Some of these works are focused on geometry-based characteristics. For 
instance, Gupte et al. (2002) developed one of the first works on vehicle classification. 
Their work consisted of using a stationary camera to monitor highway scenes.  To detect 
vehicles, the authors used segmentation or separation of the vehicles from the 
background by separating the object from the background and converting the difference 
image in a binary object mask.  The classification was made by using the length, the width 
and the velocity of the detected regions. 
 
Avery et al. (2004) proposed another geometry-based approach for vehicle detection. In 
this work, the authors presented an image processing algorithm to classify vehicles using 
the length.  The classification was made by comparing the different length of the various 
vehicle classes.  However, this technique is limited to the classification of vehicles with a 
notable change in length, but not different shape characteristics.  
 
Mithun et al. (2012), proposed a detection and classification method using multiple time 
special images.  In this paper, the authors developed a multiple virtual detection line 
(MVDL) based method that established if the moving vehicles were merged or disjointed, 
which is a common problem in imaging subtraction and other techniques used to separate 
the moving objects from the background. The authors used a two-step classification 
algorithm known as k-nearest neighbors, and reduced context dependencies using 
different shape and texture-based features. 
 
Mishra et al. (2013) proposed a framework for detecting and classifying vehicles using 
adaptive background modeling with an SVM (Support Vector Machine) based histogram 
intersection kernel.  The authors evaluated the algorithms in vehicle counting at different 
times of day.  It had an accuracy rate of 89% when analyzing heavy motor vehicles, light 
motor vehicles, two-wheelers and three wheelers. 
 
Sowjanya & Chakravarthy (2013) recommended a technique that deals with dynamic 
textures when subtracting the background. Their algorithm, called Fuzzy Color Histogram, 
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attenuates color variations caused by background motion and uses shape-based 
features, namely, aspect ratio and compactness. The authors tested the algorithm in 
different weather conditions, and the results were invariant regarding accuracy.  
 
There many challenges associated with vehicle detection. Some of the algorithms 
mentioned above may provide give good results in terms of detection, but not in 
classification. Boukerche et al., 2017 summarized the challenges with vehicle detection 
and classification as follows. 
 

 Diversity: Different vehicle types. 

 Multiplicity: Vehicles of the same class but with different shape or designs.  This is 
a disadvantage for algorithms developed to classify vehicles using length only. 

 Ambiguity: Different vehicle classes have similar shapes or designs. 

 Heterogenous views: variations in camera angle, scale, and viewpoints. 

 Light conditions: Different illumination conditions or time of day. 

 Environmental conditions: Different weather conditions.  

 Occlusions: Closed vehicles, hidden views, etc. 
 
Many of today’s ITS systems already make use of the advantages of video-based 
systems to acquire data.  Their applications include: traffic detection for signal operation, 
traffic management, enforcement, toll collection and surveillance.  Perhaps the most 
advanced implementation of video-based detection system in the transportation field is 
for autonomous vehicles.  These vehicles are outfitted with multiple cameras which are 
used to create a 3D map of their surroundings.  They need to be able to detect lane 
markings, road signs, other vehicles, pedestrians, and bicyclists.  Many car 
manufacturers have developed working prototypes of autonomous vehicles (e.g., Tesla).   
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CHAPTER 3 

Methods 
 
The Federal Highway Administration (FHWA) classifies vehicles by their axle 
configuration.  As shown in Figure 1, there are a total of 13 vehicle classes.  In this project, 
only two classes, cars, and trucks, are considered. 
 

 
Figure 1. FHWA 13 Vehicle Classes (left: FHWA) and This Project’s Simplified Two Vehicle Classes (right) 

 

In this work, we used a cross-platform library called OpenCV in Python, for both computer 
vision and image processing applications. By image processing, we refer to the 
background subtraction and contouring after image transformations; this will be discussed 
in the next section. By computer vision, as illustrated in Figure 2, we refer to the methods 
coded in OpenCV for image processing, detection, and classification. 
 

 
Figure 2. Computer vision system 

 
 
In this project, we performed background subtraction using the Gaussian mixture for the 
detection of moving vehicles.  For classification, three techniques were used, namely, 
Haar-like features, local binary patterns, and convolutional neural networks. 
 

3.1 Background subtraction (BS) using Gaussian Mixture Model (GMM) 

 
Background subtraction (BS) is a commonly used technique for pre-processing in video-
based applications.  BS is the first step in the detection of moving objects, given that it 
can provide information about their location without any prior knowledge of the objects 
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(Sobral & Vacavant, 2014).  The technique segments the foreground or moving objects 
from the background in a sequence of frames.  These algorithms for foreground extraction 
can be found in the literature (Friedman & Russell, 1997; Wren et al., 1997), but the 
process between all of them is very similar and consist of the following steps: 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Background Initialization: Use of a fixed number of 
frames to build the background model. 

Foreground detection: subtraction of each current 
frame with the background model.  

 

Background maintenance: analysis of the images to 
update the background model. 
 

Figure 3. General background subtraction scheme 

The background subtraction methods can be divided into five categories that includes a 
statistical method, a neural network method and a non-parametric method (Nurhadiyatna 
et al, 2013).  The statistical method was proposed by Wren et al. (1997).  In their work, 
they used a Gaussian function to express the background pixel intensity.  A single 
function, however, was not enough when representing a complex environment, so 
additional methods have been proposed, which include the use of a Gaussian Mixture. 
 
In this work, we used a Gaussian Mixture Model (GMM), following the algorithm proposed 
by Zivkovic (2004, 2006).  The advantage of this algorithm is that it can estimate the 
parameters of the GMM and provide an optimum number of Gaussian distributions. 
 
Pixel-based background subtraction is, in general, a decision-making problem. If the pixel 
is a background pixel (BG) or a pixel of a foreground object (FG), it is established by: 
 

p (BG|x(t)⃗⃗ ⃗⃗ ⃗⃗ )

p (FG|x(t)⃗⃗ ⃗⃗ ⃗⃗ )
=

p (x(t)⃗⃗ ⃗⃗ ⃗⃗ |BG) p(BG)

p (x(t)⃗⃗ ⃗⃗ ⃗⃗ |FG) p(FG)
 

 
(1) 

 

where x(t)⃗⃗ ⃗⃗ ⃗⃗  represents the pixel value at time t.  
 
Given that no information is known about the background, the probabilities p(BG) and 
p(FG) are equal, and a uniform distribution is assumed by the foreground object 

p (x(t)⃗⃗ ⃗⃗ ⃗⃗ |FG)  =  𝑐𝐹𝐺. The pixel is part of the background if p (x(t)⃗⃗ ⃗⃗ ⃗⃗ |BG)  >  𝑐𝐹𝐺, thus cGF is 

the threshold value.  The training set to estimate the background model is assumed as 
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independent and represented by 𝒳, the background model is then expressed as 
p̅(x⃗ |𝒳, BG). 
 
Zivkovic modified the work proposed by Stauffer & Grimson (1999).  The later authors 
created a robust adaptive tracking system to handle variations in lighting due to 
illumination.  The modified algorithm updates the training set.  At time t, 𝒳 =

{X(t),…,xt−T
}, for an adaptation period T.  The estimated density for M components is then: 

 
M  

̅̅ ̅̅ ̅̅ ̅(x ̅̅ ̅̅ ̅̅ ̅̅ I)p̅(x⃗ |𝒳, BG + FG) = ∑ πm𝒳  ⃗; μm⃗⃗⃗⃗  ⃗, σm⃗⃗⃗⃗  ⃗  (2) 

m=1

 

where μ1⃗⃗⃗⃗ 
̅̅ ̅ …μM⃗⃗⃗⃗  ⃗̅̅ ̅̅  and σ1⃗⃗⃗⃗ ̅̅ ̅ … σM⃗⃗ ⃗⃗  ⃗̅̅ ̅̅  are estimated means and variances, I is the identity matrix 

and πm̅̅ ̅̅   are the mixing weights. 
 
Figure 4 shows the separation of the foreground from the background using GMM. 
 

 
Figure 4. Background subtraction using Gaussian Mixture Model  

 

3.1.1 Contouring 
 
Contours in image processing represent the curve joining the points that are continuous 
and have the same intensity or color (see Figure 5).  In this work, we used contouring to 
delineate the objects that were separated from the background using the GMM. 
 

 
Figure 5. Background subtraction and contouring 
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In OpenCV, the contour method stores the coordinates of the boundaries of the image 
with the same intensity (x, y).  Different approximation methods can be used to generate 
the contours from the image after BS. 
 
To reduce computer memory usage, we employed OpenCV “CHAIN_APPROX_SIMPLE.”  

This approximation method does not save all the coordinates that belong to the boundary; 
it removes redundant points to compress the contour.  Figure 6 shows the endpoints of 
the horizontal and vertical segments. 
 

 
Figure 6. OpenCV Contour approximation method 

 
We used the bounding rectangles to create the contours using the top-left coordinate 
(x,y), width and height. 
 

3.1.2 Database creation 
 
The detection of the moving objects from the video streams allowed us to construct a 
database of images of cars and trucks.  After applying background subtraction and 
contouring, the coordinates of the bounding rectangle of the detected objects where 
subtracted from the video stream.  Each contour was collected as an independent image 
in the database.  Afterwards, a manual classification was made to separate the objects in 
their respective category (see Figure 7). 
 
A total of 2432 images were collected for cars and 1598 for trucks.  

 
Figure 7. Database generation after background subtraction and contouring 



Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion, 2019                                                                         

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 15 of 31 

 
3.2 Vehicle classification  

 
Our classification framework is presented in Figure 8.  The images used for training were 
collected from: 
 

1. 3D Object Representations for Fine-Grained Categorization Jonathan Krause, 
Michael Stark, Jia Deng, Li zei-Fei 4th IEEE Workshop on 3D Representation and 
Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013. 

 
2. MIOvision Trac Camera Dataset (MIO-TCD): http://tcd.miovision.com/, under a 

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International 
License. 

 
3. Images from our database (as discussed in subsection 3.1.2). 

 

In total, we used 11,000 images for cars and 5,602 images for trucks.  We used half of 
the images for training and the other half for evaluation of the accuracy of the trained 
models. 
 
 

 
Figure 8. Classification scheme 

To train the classifiers, high-performance computers were required.  The Hyperion cluster 
with a Big Data node with 1.5 TB RAM at the University of South Carolina was used. 
 

3.2.1 Cascade classifiers 
 
Cascade classifiers (CC) are a case of ensemble learning using several classifiers, where 
the information of one classifier is used to inform the next classifier.  Each of the stages 
is composed of a set of weak learners (Heitz et al., 2009). 
 
Object detection in CC is made by locating a window over an image and using a set of 
features in each stage and establishing if the location of the window corresponds to a 
positive or a negative.  A positive indicates that the object was found in the image and a 
negative indicates the contrary.  If the window is classified as a negative, the classification 
of the current region ends; if there is a positive classification, the specific area passes to 
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the next stage of classification.  Figure 9 shows the cascade system in the classifier.  The 
final positive decision of the classifier is given when all the stages come to a positive 
result, which means that the object was detected. 

Figure 9 Schematic detection cascade (adapted from Viola, 2001) 

Each stage in the cascade should have a low false negative rate to work well, and at the 
same time, have a relatively high false positive rate.  False positive means that the 
cascade has labeled a window as positive that does not contain the object of interest. 

Cascade methodology uses a set of positive and negative images.  The number of images 
was selected in a way such that they can provide a sufficient number of images to the 
selected number of stages.  A low number of stages could result in a weak trained 
classifier, whereas a high number of stages would require a higher number of images for 
training. 

Both positive and negative images for each of the vehicle classes (cars and trucks) were 
used to train the classifiers.  Negative images do not contain the object of interest (see 
Figure 10).  A total of 15,157 negative images were used. 

Figure 10. Negative images for cascade classifiers 

In this project, two cascade-based classifiers were trained, Haar-like features and Local 
Binary Patterns.  The schemes of these classifiers are the same; however, the 
construction of the integral image, or features, is different. 
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Haar-like features 

Haar-like features are digital image characteristics developed by Viola & Jones (2001) to 
detect objects from images by using specific features or structures of the object to be 
detected. This technique analyzes rectangular regions surrounding a specific pixel 
location and adds the pixel intensities in each area (see equation 3).  The rectangular 
features are obtained using a version of the actual image, which is called integral Image. 
The integral image II(x,y) is obtained by adding the pixels above and to the left of the 
coordinates (x,y), as given by the relation: 

II(x, y) = ∑ I(x', y')

x'≤x; y'≤y

 
(3) 

where II(x’, y') is the original image.  Using: 

s (x, y) = S(x,y-1)+I(x, y) 
II(x, y)  = II(x − 1, y) + S(x, y) (4) 

the integral image can be computed.  S(x, y) is the row sum, s (x, -1) = 0 and II(-1, y) = 0. 
Figure 11 shows the general scheme of the integral image computation. 

Figure 11. Integral image in Haar-like classifiers, (adapted from Johnson 2015) 

Figure 12 shows an example of the rectangular features in car detection.  Considering 
that some areas of the vehicle are darker than others, the Haar-like feature is composed 
of two rectangular areas. 
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Figure 12. Haar Features in car detection (adapted from Wen et al., 2015) 

A cascade classifier using Haar-like features has the structure presented in Figure 13. 
The generated features are created and evaluated inside the stages of the cascade. 

Figure 13. Cascade classifier using Haar-like features (left image adapted from Negri et al., 2007) 

Local Binary Patterns 

The Local Binary Patterns (LBP) is an operator that summarizes the structure of an image 
by comparing the value of each pixel with the surrounding pixel values.  When the current 
pixel value is equal or higher to the value of its neighbor, the operator assigns a value of 
1. When it is not, the value assigned is 0 (Ojala et al., 2000, 2002).  The mathematical 
representation of the LBP operator is the following:

LBP(xc, yc) = ∑ 2PS(ip − ic)

P=1

P=0

(5) 

where: 
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𝑆 =  {
1 →  𝑥 ≥  0
0 →  𝑒𝑙𝑠𝑒

Figure 14 summarizes the steps in the construction of the integral image using LBP. 

Figure 14. Local Binary Patterns Transformation (adapted from Kyrkou 2017) 

The LBP code computed the LBP function over different areas of the image.  In this 
manner, the final operator detects microstructures in the image, such as edges, or spots. 
The integral image has a histogram for each one of the n regions that divide it. The final 
feature vector was obtained by concatenating the histograms of all regions (OpenCV, 
2014).  

3.2.2 Convolutional Neural Networks 

Artificial Neural Networks (NN) are computing systems that mimic the connections of the 
human brain.  Biological neurons are simulated using different Activations Functions (AF) 
whose primary purpose is to activate or “switch on” different states when an input value 
is given.  Similar to the human brain, the neural networks have hierarchical connections, 
where the outputs of the neurons become the input of other neurons.  The different levels 
of bonds, in more technical terms, can be referred to as layers, which are composed of 
multiple nodes as illustrated in Figure 15. 

The weighted inputs of the NN are added and evaluated in the AF inside the nodes.  The 
weights are real values multiplying the input values, which change with the learning 
process to determine the output of the nodes.  The sum of the weighted inputs also 
contains a “bias” term that adds flexibility to the AF. 
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Figure 15. Structure of a three-layer NN 

Like Haar-like features and LBP, different types of NN have been used in computer vision 
systems for object recognition using feature-based approaches (Egmont-Petersen et al., 
2002; Rowley et al., 1998; Li et al., 2015) 

Convolutional Neural Networks (CNN) is a subclass of NN. The input layer in the NN 
contains information about the image, and small regions of these are connected to 
additional layers inside the NN.  Feature maps of these regions are created in a process 
called convolution that occurs in the hidden layers (Figure 16).  Similar to the feature-
based techniques already explained, the feature map in a NN represent key 
characteristics of the images such as lines, spots, or edges. 

Figure 16. Structure of a CNN (adapted from Patel & Pingel, 2017). 

In a CNN, the convolution is also known as the moving filter.  For example, in Figure 17, 
the moving filter is mapping a 2x2 region of the input image.  The output node is obtained 
by multiplying 0.5 to each node value (weights) and adding the results. 
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Figure 17. Moving filter in a CNN (adapted from “Adventures in machine learning”, 2017) 

Pooling is also a moving window technique that can help to reduce the size of the CNN 
and to make the features invariant to scale or orientation.  During the pooling, instead of 
using weights, a statistical function is applied to the values of the window.  For instance, 
max pooling refers to the selection of the maximum value.  Figure 18 shows a full CNN 
structure. 

Figure 18. Full CNN structure 
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CHAPTER 4 

Implementation and Results 

The image preprocessing was implemented using Python v3.6 and the OpenCV library. 
The training of the classifiers was also performed using Python v3.6.  The CNN was 
developed using TensorFlow library (Abadi et al., 2016). 

4.1 Background subtraction and Contouring 

Before BS, Gaussian blur was applied to the frames extracted from the video recordings. 
The purpose was to smooth out the images and reduce, as much as possible, the noise 
generated by the camera movement.  The Gaussian filter combines the input points with 
a Gaussian kernel, adds them and produces an output array (Szeliski, 2010).  The 
Gaussian kernel in two dimensions is expressed as 

G(x, y)  =  
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2
(6) 

After smoothing the image, the background subtraction procedure (see Sec 3.1) was 
applied.  The resulting foreground images of the moving vehicles were subject to two 
additional morphological transformations, namely, erosion and dilation. 

Using erosion, the boundaries of the foreground object were eroded using a 2D 
convolutional kernel.  The original image (after background subtraction) was transformed, 
by assigning a value of 1 to the areas that under the kernel (window) have at least one 
pixel value of 1.  If not, the value is eroded (give a zero value). 

Applying this technique, small white dots in the original image (left image in Figure 20), 
associated with noise were removed (right image in Figure 19), and objects that appeared 
to be joined are detached. 

Figure 19. Background subtraction (a), Erosion (b) 

Dilation is a technique that increases the white region of the foreground object.  A pixel 
value is 1 if, under the kernel, at least one pixel value is 1.  In this manner, we assembled 
separate parts of the objects by increasing the area of the separated regions and without 
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the presence of the noise.  Figure 20 shows the effect of increasing dilation of the 
foreground objects. 

.
Figure 20. Erosion (a), Dilation (b) 

The contouring of the dilated objects was performed using the methods described in 
section 3.1.1, after dilation of the foreground objects.  Given that the foreground shapes 
are connected to, or may be inside others, the contours have a hierarchy that determines 
if it is a child or a parent.  This consideration was accounted for in our contour retrieval. 

Table 1. Detection in the first 20 frames of video recording 

Frame No Number of objects Contours detected % Detection 

1 5 4 80 

2 5 5 100 

3 5 5 100 

4 6 6 100 

5 6 6 100 

6 6 6 100 

7 7 6 86 

8 7 7 100 

9 7 7 100 

10 7 6 86 

11 7 6 86 

12 7 6 86 

13 7 6 86 

14 7 6 86 

15 7 6 86 

16 8 8 100 

17 8 7 88 

18 6 5 83 

19 6 6 100 

20 6 6 100 

Average % of Detection 93 
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We evaluated the detection scheme for the first 20 frames of a video recording as shown 
in Figure 21.  It is important to note that the detection is likely of the same foreground 
objects, given that the number of frames is very small.  For the total number of elements 
in each frame, the average percentage detection rate was of 93% (Table 1). 

Figure 21. Contours in frames 3 and 11 

The algorithm developed for background subtraction and contouring follows the general 
procedure presented in Figure 22. 

 Video frames extraction 

Gaussian Blur 

Foreground objects Erosion 

Foreground objects Dilation 

Background subtraction 

Contouring 

Pre-
processing 

Figure 22. Pre-processing scheme
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4.2 Classifiers 

4.2.1 Haar-like and LBP input parameters 

The images used to train the Boosted classifiers (LBP and Haar) have the following sizes 
per class: 

Cars: 40x20 pixels 

Trucks: 60x20 pixels 

The parameters of the Haar-like and LBP algorithms are the following: 

4.2.2 CNN input parameters 

The images used to train the CNN are required to have the same dimension, independent 
of its classification.  Considering that it is convenient to maintain the aspect-ratios of the 
different vehicles as a property for classification, the images were cropped as follows: 

Cars: 56x56 pixels 

Trucks: 56x56 pixels 

We created 32, 5x5 convolutional filters + ReLU activations.  Our CNN was composed of 
two layers.  The first layer had 56 x 56 nodes, and a 2X2 window was used to apply max 
pooling operations using a stride of 2.  The second layer had the same structure but with 

PARAMETERS: 
Type of boosted classifier: GAB (Gentle AdaBoost) 
Minimal desired hit rate for each stage of the classifier: 0.995 
Maximal desired false alarm rate for each stage of the classifier: 0.5 
Specifies whether trimming should be used and its weight: 0.95 
Maximal depth of a weak tree: 1 
Maximal count of weak trees for every cascade stage: 100 
Mode (Only for Haar): ALL (Uses upright and 45-degree rotated feature set) 



Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion, 2019         

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 26 of 31 

64 filters.  The fully connected layer contained 12,544 nodes, and the hidden layer 1,000 
nodes.  The output layer contained two classes of vehicles, cars and trucks. 

The test of the accuracy of our training model is presented in Figure 23. The accuracy 
achieved with CNN was 97%. 

Figure 23. CNN Accuracy graph 

4.2.3 Evaluation of the classifiers 

The Haar-like, LBP and CNN models were tested in a batch containing 5,500 images for 
cars and 2,801 images for trucks.  The results are presented in Table 2.  Note that the 
sum of the “Cars” row is 5,500 and the sum of the “Trucks” row is 2,801.  Among 5,500 
cars, the LBP classifier identified 5,162 of them correctly, Harr-like classifier 5,418 and 
the CNN classifier 5,437.  Similarly, among 2,801 trucks, the LBP classifier identified 
1,478 correctly, Haar-like classifier 1,711 and the CNN classifier 2687. 

Table 2. Accuracy evaluation of the different classifiers 

LBP Classifier Cars Trucks 

Cars 5162 338 

Trucks 1323 1478 

Accuracy 93.9% 52.8% 

Haar-like Classifer Cars Trucks 

Cars 5418 82 

Trucks 1090 1711 

Accuracy 98.5% 61.1% 

CNN Classifer Cars Trucks 

Cars 5437 63 

Trucks 114 2687 

Accuracy 98.9% 95.9% 
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As shown in Table 2, the CNN classifier yielded the highest accuracy rate among the 
trained classifiers.  The ability of the CNN classifier to correctly identify cars and trucks is 
demonstrated in Figure 24. 

Figure 24. Demonstration of CNN classifier on SCDOT-recorded video
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CHAPTER 5 

Conclusions 

The results of this research showed that background subtraction using Gaussian mixture 
had an accuracy rate of 93% in detection, which indicates that the algorithm successfully 
detected most of the moving objects.  The high accuracy rate is also due to the use of 
erosion and dilatation.  Moreover, by tracking objects through successive frames, 
counting accuracy is further improved. 

The LBP classifier had a 93.9% accuracy rate in classifying cars.  However, the accuracy 
rate for trucks was only 52.8%.  The results obtained for Haar-like feature classifier also 
showed an excellent classification rate for 98.5%.  Its classification of trucks (61.1%) is 
better than the LBP classifier.  It is very likely that the cascade classifiers may have a 
higher classification rate for cars not because the critical features for cars were correctly 
developed, but rather it is due to the misclassification of trucks as cars. 

Contrary to the cascade classifiers, CNN was able to achieve a remarkable accuracy rate 
for both classes, 98.9% for cars and 95.9% for trucks.  These results indicate that CNN 
is the best classifier among those evaluated and has the best potential to detecting and 
classifying multiple vehicle classes and other transportation modes (i.e., pedestrians, 
bicyclists). 



Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion, 2019                                                                         

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 29 of 31 

REFERENCES 
 
Boukerche, A., Siddiqui, A.J. and Mammeri, A., 2017. Automated Vehicle Detection and 
Classification: Models, Methods, and Techniques. ACM Computing Surveys 
(CSUR), 50(5), p.62. 

Harlow, C. and Peng, S., 2001. Automatic vehicle classification system with range 
sensors. Transportation Research Part C: Emerging Technologies, 9(4), pp.231-247. 

Jones, M.J. and Viola, P., 2003. Face recognition using boosted local features. Technical 
Report MERL-TR-2003-25, MitsubishiElectric Research Laboratory. 

Gupte, S., Masoud, O., Martin, R.F. and Papanikolopoulos, N.P., 2002. Detection and 
classification of vehicles. IEEE Transactions on intelligent transportation systems, 3(1), 
pp.37-47. 

Avery, R.P., Wang, Y. and Rutherford, G.S., 2004, October. Length-based vehicle 
classification using images from uncalibrated video cameras. In Intelligent Transportation 
Systems, 2004. Proceedings. The 7th International IEEE Conference on (pp. 737-742). 
IEEE. 

Mithun, N.C., Rashid, N.U. and Rahman, S.M., 2012. Detection and classification of 
vehicles from video using multiple time-spatial images. IEEE Transactions on Intelligent 
Transportation Systems, 13(3), pp.1215-1225 

Mishra, P.K., Athiq, M., Nandoriya, A. and Chaudhuri, S., 2013. Video-based vehicle 
detection and classification in heterogeneous traffic conditions using a novel kernel 
classifier. IETE journal of research, 59(5), pp.541-550. 

Sowjanya, K. and Chakravarthy, G., 2013. Vehicle Detection and Classification using 
Consecutive Neighbouring Frame Difference Method. Industrial Science, 1(2). 

Randall, J.L., 2012. Traffic Recorder Instruction Manual. Texas: Texas Department of 
Transportation. 

Sobral, A. and Vacavant, A., 2014. A comprehensive review of background subtraction 
algorithms evaluated with synthetic and real videos. Computer Vision and Image 
Understanding, 122, pp.4-21. 

Friedman, N. and Russell, S., 1997, August. Image segmentation in video sequences: A 
probabilistic approach. In Proceedings of the Thirteenth Conference on Uncertainty in 
artificial intelligence (pp. 175-181). Morgan Kaufmann Publishers Inc. 

Nurhadiyatna, A., Jatmiko, W., Hardjono, B., Wibisono, A., Sina, I. and Mursanto, P., 
2013, October. Background subtraction using Gaussian mixture model enhanced by hole 
filling algorithm (gmmhf). In Systems, Man, and Cybernetics (SMC), 2013 IEEE 
International Conference on (pp. 4006-4011). IEEE. 



Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion, 2019                                                                         

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 30 of 31 

Wren, C.R., Azarbayejani, A., Darrell, T. and Pentland, A.P., 1997. Pfinder: Real-time 
tracking of the human body. IEEE Transactions on Pattern Analysis & Machine 
Intelligence, (7), pp.780-785. 

Zivkovic, Z., 2004, August. Improved adaptive Gaussian mixture model for background 
subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th 
International Conference on (Vol. 2, pp. 28-31). IEEE. 

Zivkovic, Z. and Van Der Heijden, F., 2006. Efficient adaptive density estimation per 
image pixel for the task of background subtraction. Pattern recognition letters, 27(7), 
pp.773-780. 

Stauffer, C. and Grimson, W.E.L., 1999, June. Adaptive background mixture models for 
real-time tracking. Proceedings of the 999 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (p. 2246). 

Heitz, G., Gould, S., Saxena, A. and Koller, D., 2009. Cascaded classification models: 
Combining models for holistic scene understanding. In Advances in Neural Information 
Processing Systems (pp. 641-648). 

Viola, P. and Jones, M., 2001. Rapid object detection using a boosted cascade of simple 
features. In Computer Vision and Pattern Recognition. Proceedings of the 2001 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. 
I-I). 

Johnson, A. (2015). [online] https://slideplayer.com/slide/8715285/ [Accessed 21 Jun. 
2018]. 

Patel, S. and Pingel, J. (2017). [online], Introduction to Deep Learning: What Are 
Convolutional Neural Networks?, https://www.mathworks.com/videos/introduction-to-
deep-learning-what-are-convolutional-neural-networks--1489512765771.html, 
[Accessed 30 Nov. 2018]. 

Wen, X., Shao, L., Fang, W. and Xue, Y., 2015. Efficient Feature Selection and 
Classification for Vehicle Detection. IEEE Trans. Circuits Syst. Video Techn., 25(3), 
pp.508-517. 

Negri, P., Clady, X. and Prevost, L., 2007, May. Benchmarking haar and histograms of 
oriented gradients features applied to vehicle detection. In ICINCO-RA (1) (pp. 359-364). 

Ojala, T., Pietikäinen, M. and Mäenpää, T., 2000, June. Gray scale and rotation invariant 
texture classification with local binary patterns. In European Conference on Computer 
Vision (pp. 404-420). Springer, Berlin, Heidelberg. 

Ojala, T., Pietikainen, M. and Maenpaa, T., 2002. Multiresolution gray-scale and rotation 
invariant texture classification with local binary patterns. IEEE Transactions on pattern 
analysis and machine intelligence, 24(7), pp.971-987. 

https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html
https://www.mathworks.com/videos/introduction-to-deep-learning-what-are-convolutional-neural-networks--1489512765771.html


Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion, 2019                                                                         

 

Center for Connected Multimodal Mobility (C2M2) 
Clemson University, University of South Carolina, South Carolina State University, The Citadel, Benedict College 

Page 31 of 31 

Opencv dev team (2011-2014). Face Recognition with OpenCV [online] 
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-
binary-patterns-histograms [Accessed 15 Nov. 2018]. 

Kyrkou, C. (2017) Object Detection Using Local Binary Patterns [online] 
https://medium.com/@ckyrkou/object-detection-using-local-binary-patterns-
50b165658368. [Accessed 18 Oct. 2018]. 

Egmont-Petersen, M., de Ridder, D. and Handels, H., 2002. Image processing with neural 
networks—a review. Pattern Recognition, 35(10), pp.2279-2301.  

Rowley, H.A., Baluja, S. and Kanade, T., 1998. Neural network-based face 
detection. IEEE Transactions on pattern analysis and machine intelligence, 20(1), pp.23-
38. 

Li, H., Lin, Z., Shen, X., Brandt, J. and Hua, G., 2015. A convolutional neural network 
cascade for face detection. In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition (pp. 5325-5334). 

Andy, (2017). Adventures in machine learning [online] 
http://adventuresinmachinelearning.com/convolutional-neural-networks-tutorial-
tensorflow/ [Accessed 15 Oct. 2018]. 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., 
Irving, G., Isard, M. and Kudlur, M., 2016, November. Tensorflow: a system for large-
scale machine learning. In OSDI (Vol. 16, pp. 265-283). 

Szeliski, R., 2010. Computer vision: algorithms and applications. Springer Science & 
Business Med.  

https://medium.com/@ckyrkou/object-detection-using-local-binary-patterns-50b165658368
https://medium.com/@ckyrkou/object-detection-using-local-binary-patterns-50b165658368

	Structure Bookmarks
	 
	 
	Figure
	Figure
	 
	Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion 
	 
	 
	Final Report 
	 
	 
	by 
	 
	Nathan Huynh1, Robert Mullen2, Yohanna Mejia3 
	1 
	1 
	huynhn@cec.sc.edu
	huynhn@cec.sc.edu

	, 8037778947, 300 Main St C211 

	2 
	2 
	rlm@sc.edu
	rlm@sc.edu

	, 8037770524, 300 Main St C118 

	3mejiacru@email.sc.edu
	3mejiacru@email.sc.edu
	3mejiacru@email.sc.edu

	, 300 Main St B122 

	 
	 
	 
	University of South Carolina 
	March 2019 
	 
	 
	 
	Figure
	 
	Center for Connected Multimodal Mobility (C2M2) 
	Span
	Span
	 
	Figure
	 
	Figure
	Figure
	Figure
	            
	Figure
	Figure
	Figure
	    
	 
	200 Lowry Hall, Clemson University 
	Clemson, SC 29634 
	DISCLAIMER 
	 
	The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange.  The report is funded, partially or entirely, by the Center for Connected Multimodal Mobility (C2M2) (Tier 1 University Transportation Center) Grant, which is headquartered at Clemson University, Clemson, South Carolina, USA, from the U.S. Department of Transportation’s University Transport
	 
	 
	  
	ACKNOWLEDGMENT 
	 
	The authors acknowledge the Research Computing Center at the University of South Carolina for providing the computing resources needed to perform this research project.
	Technical Report Documentation Page 
	Technical Report Documentation Page 
	Technical Report Documentation Page 
	Technical Report Documentation Page 
	Technical Report Documentation Page 


	TR
	Span
	1. Report No. 
	1. Report No. 
	 

	2. Government Accession No. 
	2. Government Accession No. 
	 

	3. Recipient’s Catalog No. 
	3. Recipient’s Catalog No. 
	 


	TR
	Span
	4. Title and Subtitle 
	4. Title and Subtitle 
	Real Time Classification of Vehicle Types and Modes using Image Analysis and Data Fusion 

	5. Report Date 
	5. Report Date 
	March, 2019 


	TR
	Span
	6. Performing Organization Code 
	6. Performing Organization Code 


	TR
	Span
	7. Author(s) 
	7. Author(s) 
	Nathan Huynh, Ph.D.; ORCID: https://orcid.org/0000-0002-4605-5651 
	Robert L. Mullen, Ph.D., PE;  ORCID:   https://orcid.org/0000-0002-4321-5939 
	Yohanna Mejia, Ph.D.;  ORCID: https://orcid.org/0000-0003-3657-4850 
	 
	 

	8. Performing Organization Report No. 
	8. Performing Organization Report No. 
	 


	TR
	Span
	9. Performing Organization Name and Address 
	9. Performing Organization Name and Address 
	University of South Carolina 
	Department of Civil & Environmental Engineering 
	300 Main St, Columbia SC 29208 

	10.  Work Unit No. 
	10.  Work Unit No. 
	 


	TR
	Span
	11.  Contract or Grant No. 
	11.  Contract or Grant No. 
	69A3551747117 


	TR
	Span
	12. Sponsoring Agency Name and Address 
	12. Sponsoring Agency Name and Address 
	Center for Connected Multimodal Mobility (C2M2)  
	Clemson University  
	200 Lowry Hall 
	Clemson, SC 29634 
	 

	13. Type of Report and Period Covered 
	13. Type of Report and Period Covered 
	Final Report January-December 2018 


	TR
	Span
	14.  Sponsoring Agency Code 
	14.  Sponsoring Agency Code 


	TR
	Span
	15. Supplementary Notes   
	15. Supplementary Notes   
	NA 


	TR
	Span
	16. Abstract 
	16. Abstract 
	Several methodologies to count and classify vehicles from video recordings were explored in this research to provide transportation agencies with a safer alternative to collect these data which are needed for traffic engineering and planning studies.  In this study, three approaches for detecting and classifying vehicles were investigated: Haar-like features, Local Binary Patterns (LBP), and Convolutional Neural Networks (CNN). Recordings from the South Carolina Department of Transportation (SCDOT) were use


	TR
	Span
	17. Keywords  
	17. Keywords  
	Computer vision, Cascade 
	Classifiers, Neural networks, Transportation modes, Local Binary Patterns, Haar-like features. 

	18. Distribution Statement 
	18. Distribution Statement 
	No restrictions. 


	TR
	Span
	19. Security Classif. (of this report) 
	19. Security Classif. (of this report) 
	Unclassified 

	20. Security Classif. (of this page) 
	20. Security Classif. (of this page) 
	Unclassified 

	21. No. of Pages 
	21. No. of Pages 
	32 

	22. Price 
	22. Price 
	NA 


	TR
	Span
	  
	  




	 
	Table of Contents 
	 
	 
	DISCLAIMER 
	DISCLAIMER 
	DISCLAIMER 

	................................................................................................
	.................. 2
	 

	ACKNOWLEDGMENT 
	ACKNOWLEDGMENT 
	ACKNOWLEDGMENT 

	................................................................................................
	.... 3
	 

	EXECUTIVE SUMMARY 
	EXECUTIVE SUMMARY 
	EXECUTIVE SUMMARY 

	................................................................................................
	. 7
	 

	CHAPTER 1 
	CHAPTER 1 
	CHAPTER 1 

	................................................................................................
	.................... 8
	 

	Introduction 
	Introduction 
	Introduction 

	................................................................................................
	.................. 8
	 

	1.1 Motivation 
	1.1 Motivation 
	1.1 Motivation 

	................................................................................................
	........... 8
	 

	CHAPTER 2 
	CHAPTER 2 
	CHAPTER 2 

	................................................................................................
	.................... 9
	 

	Literature Review 
	Literature Review 
	Literature Review 

	................................................................................................
	......... 9
	 

	Video object detection 
	Video object detection 
	Video object detection 

	................................................................
	.............................. 9
	 

	CHAPTER 3 
	CHAPTER 3 
	CHAPTER 3 

	................................................................................................
	.................. 11
	 

	Methods 
	Methods 
	Methods 

	................................................................................................
	..................... 11
	 

	3.1 Background subtraction (BS) using Gaussian Mixture Model (GMM) .............. 11
	3.1 Background subtraction (BS) using Gaussian Mixture Model (GMM) .............. 11
	3.1 Background subtraction (BS) using Gaussian Mixture Model (GMM) .............. 11

	 

	3.2 Vehicle classification 
	3.2 Vehicle classification 
	3.2 Vehicle classification 

	................................................................
	........................ 15
	 

	CHAPTER 4 
	CHAPTER 4 
	CHAPTER 4 

	................................................................................................
	.................. 22
	 

	Implementation and Results 
	Implementation and Results 
	Implementation and Results 

	................................................................
	...................... 22
	 

	4.1 Background subtraction and Contouring 
	4.1 Background subtraction and Contouring 
	4.1 Background subtraction and Contouring 

	................................
	.......................... 22
	 

	4.2 Classifiers
	4.2 Classifiers
	4.2 Classifiers

	................................................................................................
	......... 25
	 

	CHAPTER 5 
	CHAPTER 5 
	CHAPTER 5 

	................................................................................................
	.................. 28
	 

	Conclusions 
	Conclusions 
	Conclusions 

	................................................................................................
	............... 28
	 

	REFERENCES 
	REFERENCES 
	REFERENCES 

	................................................................................................
	.............. 29
	 

	 

	 
	 
	 
	 
	 
	 
	List of Tables  
	 
	 
	Table 1. Detection in the first 20 frames of video recording 
	Table 1. Detection in the first 20 frames of video recording 
	Table 1. Detection in the first 20 frames of video recording 

	................................
	.......... 23
	 

	Table 2. Accuracy evaluation of the different classifiers 
	Table 2. Accuracy evaluation of the different classifiers 
	Table 2. Accuracy evaluation of the different classifiers 

	................................
	................ 26
	 

	 

	List of Figures 
	 
	 
	Figure 1. FHWA 13 Vehicle Classes (left: Randall, 2012) and This Project’s Simplified Two Vehicle Classes (right) 
	Figure 1. FHWA 13 Vehicle Classes (left: Randall, 2012) and This Project’s Simplified Two Vehicle Classes (right) 
	Figure 1. FHWA 13 Vehicle Classes (left: Randall, 2012) and This Project’s Simplified Two Vehicle Classes (right) 

	................................................................
	........................... 11
	 

	Figure 2. Computer vision system 
	Figure 2. Computer vision system 
	Figure 2. Computer vision system 

	................................................................
	................. 11
	 

	Figure 3. General background subtraction scheme 
	Figure 3. General background subtraction scheme 
	Figure 3. General background subtraction scheme 

	................................
	....................... 12
	 

	Figure 4. Background subtraction using Gaussian Mixture Model 
	Figure 4. Background subtraction using Gaussian Mixture Model 
	Figure 4. Background subtraction using Gaussian Mixture Model 

	................................
	 13
	 

	Figure 5. Background subtraction and contouring 
	Figure 5. Background subtraction and contouring 
	Figure 5. Background subtraction and contouring 

	................................
	......................... 13
	 

	Figure 6. OpenCV Contour approximation method 
	Figure 6. OpenCV Contour approximation method 
	Figure 6. OpenCV Contour approximation method 

	................................
	....................... 14
	 

	Figure 7. Database generation after background subtraction and contouring ............... 14
	Figure 7. Database generation after background subtraction and contouring ............... 14
	Figure 7. Database generation after background subtraction and contouring ............... 14

	 

	Figure 8. Classification scheme 
	Figure 8. Classification scheme 
	Figure 8. Classification scheme 

	................................................................
	.................... 15
	 

	Figure 9. Schematic detection cascade (Viola, 2001) 
	Figure 9. Schematic detection cascade (Viola, 2001) 
	Figure 9. Schematic detection cascade (Viola, 2001) 

	................................
	................... 16
	 

	Figure 10. Negative images for cascade classifiers 
	Figure 10. Negative images for cascade classifiers 
	Figure 10. Negative images for cascade classifiers 

	................................
	...................... 16
	 

	Figure 11. Integral image in Haar-like classifiers, (Johnson 2015) 
	Figure 11. Integral image in Haar-like classifiers, (Johnson 2015) 
	Figure 11. Integral image in Haar-like classifiers, (Johnson 2015) 

	................................
	 17
	 

	Figure 12. Haar Features in car detection (Wen et al., 2015) 
	Figure 12. Haar Features in car detection (Wen et al., 2015) 
	Figure 12. Haar Features in car detection (Wen et al., 2015) 

	................................
	........ 18
	 

	Figure 13. Cascade classifier using Haar-like features (left image from Negri et al., 2007) 
	Figure 13. Cascade classifier using Haar-like features (left image from Negri et al., 2007) 
	Figure 13. Cascade classifier using Haar-like features (left image from Negri et al., 2007) 

	................................................................................................................................
	...... 18
	 

	Figure 14. Local Binary Patterns Transformation (Kyrkou 2017) 
	Figure 14. Local Binary Patterns Transformation (Kyrkou 2017) 
	Figure 14. Local Binary Patterns Transformation (Kyrkou 2017) 

	................................
	... 19
	 

	Figure 15. Structure of a three-layer NN 
	Figure 15. Structure of a three-layer NN 
	Figure 15. Structure of a three-layer NN 

	................................................................
	....... 20
	 

	Figure 16. Structure of a CNN (Patel & Pingel, 2017). 
	Figure 16. Structure of a CNN (Patel & Pingel, 2017). 
	Figure 16. Structure of a CNN (Patel & Pingel, 2017). 

	................................
	.................. 20
	 

	Figure 17. Moving filter in a CNN, (“Adventures in machine learning”, 2017) ................ 21
	Figure 17. Moving filter in a CNN, (“Adventures in machine learning”, 2017) ................ 21
	Figure 17. Moving filter in a CNN, (“Adventures in machine learning”, 2017) ................ 21

	 

	Figure 18. Full CNN structure 
	Figure 18. Full CNN structure 
	Figure 18. Full CNN structure 

	................................................................
	........................ 21
	 

	Figure 19. Background subtraction (a), Erosion (b) 
	Figure 19. Background subtraction (a), Erosion (b) 
	Figure 19. Background subtraction (a), Erosion (b) 

	................................
	....................... 22
	 

	Figure 20. Erosion (a), Dilation (b) 
	Figure 20. Erosion (a), Dilation (b) 
	Figure 20. Erosion (a), Dilation (b) 

	................................................................
	................ 23
	 

	Figure 21. Contours in frames 3 and 11 
	Figure 21. Contours in frames 3 and 11 
	Figure 21. Contours in frames 3 and 11 

	................................................................
	........ 24
	 

	Figure 22. Pre-processing scheme
	Figure 22. Pre-processing scheme
	Figure 22. Pre-processing scheme

	................................................................
	................ 24
	 

	Figure 23. CNN Accuracy graph 
	Figure 23. CNN Accuracy graph 
	Figure 23. CNN Accuracy graph 

	................................................................
	................... 26
	 

	Figure 24. Demonstration of CNN classifier on SCDOT-recorded video ....................... 27
	Figure 24. Demonstration of CNN classifier on SCDOT-recorded video ....................... 27
	Figure 24. Demonstration of CNN classifier on SCDOT-recorded video ....................... 27

	 

	 

	 
	EXECUTIVE SUMMARY 
	 
	Object detection and classification from videos have been studied and applied in many fields. The primary objective is to develop techniques to gather and interpret visual information through different discriminant functions.  This research area is particularly relevant in transportation for agencies need to obtain and report the traffic volume and types of vehicles that travel on their networks.  Also, these data are necessary for traffic engineering studies as well as planning studies.  Obtaining traffic 
	 
	The assembly of a discriminant function for detection and classification of vehicles is addressed in this report. The objective is to combine detection and classification in a single algorithm to classify cars and trucks.  To accomplish this, a database containing images of cars and trucks was created using recordings from the South Carolina Department of Transportation (SCDOT). Specific areas of the video stream were extracted as independent images by applying background subtraction using Gaussian mixture-
	 
	The set of images was then used to train three different models for classification, namely Local Binary Patterns (LBP), Haar Cascade Classifier (HCC), and a Convolutional Neural Network (CNN). Image extraction and model training were implemented in Python and utilized the OpenCV (Open source Computer Vision) Library. 
	 
	The results obtained from the analysis showed that the detection scheme using image subtraction and contouring was 93% accurate in detecting all moving objects in each of the frames. The trained models showed that the CNN classifier had a better classification accuracy rate (97%) compared to LBP and HCC algorithms. 
	 
	 
	 
	 
	CHAPTER 1 
	Introduction  
	 
	1.1 Motivation 
	 
	Traffic data collection is an elementary and necessary function performed by all transportation agencies.  Traffic data is essential to understanding the current travel demand and pattern and are needed for the assessment of future developments.  Traffic counting is often performed using pneumatic tubes due to their low cost; however, this method is unsafe for DOT staff personnel. 
	 
	There are many non-intrusive technologies (e.g., passive acoustic detectors, ultrasonic detectors, microwave and radar detection systems, and video detection systems) that can be used for counting traffic and for classifying vehicles.  These non-intrusive technologies have been investigated before due to their advantage to collect data off the roadway, and thereby, minimize or eliminate some of the safety and maintenance issues associated with road tubes.  The SCDOT collects some of its traffic data via vid
	 
	This research explores three different methods to count and classify vehicles simultaneously: Local Binary Patterns (LBP), Haar Cascade Classifier (HCC), and a Convolutional Neural Network (CNN).  The goal is to identify and fine tune a technique that can be used by state DOTs and other transportation agencies to obtain traffic data more safely and at a lower cost. 
	To accomplish the stated goal, a database with two vehicle classes, namely, cars and trucks was created using video recordings from the South Carolina Department of Transportation.  The database was then used to train three classifiers developed using the different techniques mentioned. A discriminant function was developed using OpenCV, a computer vision library for processing video images, which combined the preprocessing methods and the classifiers for the simultaneous detection and classification of car
	This report includes a literature review of the techniques that were used to train the classifiers, a review of the method used for detecting and extracting objects from the video recordings, and a description about the training procedure and testing of the classifiers. 
	 
	 
	 
	 
	 
	CHAPTER 2 
	Literature Review  
	 
	Video object detection 
	 
	Automated Vehicle Classification (AVC) systems have been developed to assist human operators in system operations and surveillance (Boukerche et al., 2017).  Typically, the AVC algorithms are incorporated in cameras to help identify different vehicles using the plate number, color, or type (Harlow, 2001).   This practice has received a great deal of attention in recent years, and its ultimate purpose is to develop robust systems for real-time classification. 
	 
	With the development of tools for human face recognition (Jones & Viola, 2001), the algorithms used in AVC systems have improved.  However, these techniques still face many challenges regarding vehicle diversity, multiplicity, heterogeneous views, and lighting conditions, among others.  Authors have proposed various approaches to classify vehicles.  Some of these works are focused on geometry-based characteristics. For instance, Gupte et al. (2002) developed one of the first works on vehicle classification.
	 
	Avery et al. (2004) proposed another geometry-based approach for vehicle detection. In this work, the authors presented an image processing algorithm to classify vehicles using the length.  The classification was made by comparing the different length of the various vehicle classes.  However, this technique is limited to the classification of vehicles with a notable change in length, but not different shape characteristics.  
	 
	Mithun et al. (2012), proposed a detection and classification method using multiple time special images.  In this paper, the authors developed a multiple virtual detection line (MVDL) based method that established if the moving vehicles were merged or disjointed, which is a common problem in imaging subtraction and other techniques used to separate the moving objects from the background. The authors used a two-step classification algorithm known as k-nearest neighbors, and reduced context dependencies using
	 
	Mishra et al. (2013) proposed a framework for detecting and classifying vehicles using adaptive background modeling with an SVM (Support Vector Machine) based histogram intersection kernel.  The authors evaluated the algorithms in vehicle counting at different times of day.  It had an accuracy rate of 89% when analyzing heavy motor vehicles, light motor vehicles, two-wheelers and three wheelers. 
	 
	Sowjanya & Chakravarthy (2013) recommended a technique that deals with dynamic textures when subtracting the background. Their algorithm, called Fuzzy Color Histogram, 
	attenuates color variations caused by background motion and uses shape-based features, namely, aspect ratio and compactness. The authors tested the algorithm in different weather conditions, and the results were invariant regarding accuracy.  
	 
	There many challenges associated with vehicle detection. Some of the algorithms mentioned above may provide give good results in terms of detection, but not in classification. Boukerche et al., 2017 summarized the challenges with vehicle detection and classification as follows. 
	 
	 Diversity: Different vehicle types. 
	 Diversity: Different vehicle types. 
	 Diversity: Different vehicle types. 

	 Multiplicity: Vehicles of the same class but with different shape or designs.  This is a disadvantage for algorithms developed to classify vehicles using length only. 
	 Multiplicity: Vehicles of the same class but with different shape or designs.  This is a disadvantage for algorithms developed to classify vehicles using length only. 

	 Ambiguity: Different vehicle classes have similar shapes or designs. 
	 Ambiguity: Different vehicle classes have similar shapes or designs. 

	 Heterogenous views: variations in camera angle, scale, and viewpoints. 
	 Heterogenous views: variations in camera angle, scale, and viewpoints. 

	 Light conditions: Different illumination conditions or time of day. 
	 Light conditions: Different illumination conditions or time of day. 

	 Environmental conditions: Different weather conditions.  
	 Environmental conditions: Different weather conditions.  

	 Occlusions: Closed vehicles, hidden views, etc. 
	 Occlusions: Closed vehicles, hidden views, etc. 


	 
	Many of today’s ITS systems already make use of the advantages of video-based systems to acquire data.  Their applications include: traffic detection for signal operation, traffic management, enforcement, toll collection and surveillance.  Perhaps the most advanced implementation of video-based detection system in the transportation field is for autonomous vehicles.  These vehicles are outfitted with multiple cameras which are used to create a 3D map of their surroundings.  They need to be able to detect la
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 3 
	Methods 
	 
	The Federal Highway Administration (FHWA) classifies vehicles by their axle configuration.  As shown in Figure 1, there are a total of 13 vehicle classes.  In this project, only two classes, cars, and trucks, are considered. 
	  
	Figure
	Figure 1. FHWA 13 Vehicle Classes (left: FHWA) and This Project’s Simplified Two Vehicle Classes (right) 
	 
	In this work, we used a cross-platform library called OpenCV in Python, for both computer vision and image processing applications. By image processing, we refer to the background subtraction and contouring after image transformations; this will be discussed in the next section. By computer vision, as illustrated in Figure 2, we refer to the methods coded in OpenCV for image processing, detection, and classification. 
	 
	 
	Figure
	Figure 2. Computer vision system 
	 
	 
	In this project, we performed background subtraction using the Gaussian mixture for the detection of moving vehicles.  For classification, three techniques were used, namely, Haar-like features, local binary patterns, and convolutional neural networks. 
	 
	3.1 Background subtraction (BS) using Gaussian Mixture Model (GMM) 
	 
	Background subtraction (BS) is a commonly used technique for pre-processing in video-based applications.  BS is the first step in the detection of moving objects, given that it can provide information about their location without any prior knowledge of the objects 
	(Sobral & Vacavant, 2014).  The technique segments the foreground or moving objects from the background in a sequence of frames.  These algorithms for foreground extraction can be found in the literature (Friedman & Russell, 1997; Wren et al., 1997), but the process between all of them is very similar and consist of the following steps: 
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	Figure 3. General background subtraction scheme 
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	The background subtraction methods can be divided into five categories that includes a statistical method, a neural network method and a non-parametric method (Nurhadiyatna et al, 2013).  The statistical method was proposed by Wren et al. (1997).  In their work, they used a Gaussian function to express the background pixel intensity.  A single function, however, was not enough when representing a complex environment, so additional methods have been proposed, which include the use of a Gaussian Mixture. 
	 
	In this work, we used a Gaussian Mixture Model (GMM), following the algorithm proposed by Zivkovic (2004, 2006).  The advantage of this algorithm is that it can estimate the parameters of the GMM and provide an optimum number of Gaussian distributions. 
	 
	Pixel-based background subtraction is, in general, a decision-making problem. If the pixel is a background pixel (BG) or a pixel of a foreground object (FG), it is established by: 
	 
	p(BG|x(t)⃗⃗⃗⃗⃗⃗ )p(FG|x(t)⃗⃗⃗⃗⃗⃗ )=p(x(t)⃗⃗⃗⃗⃗⃗ |BG)p(BG)p(x(t)⃗⃗⃗⃗⃗⃗ |FG)p(FG) 
	p(BG|x(t)⃗⃗⃗⃗⃗⃗ )p(FG|x(t)⃗⃗⃗⃗⃗⃗ )=p(x(t)⃗⃗⃗⃗⃗⃗ |BG)p(BG)p(x(t)⃗⃗⃗⃗⃗⃗ |FG)p(FG) 
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	(1) 




	 
	where x(t)⃗⃗⃗⃗⃗⃗  represents the pixel value at time t.  
	 
	Given that no information is known about the background, the probabilities p(BG) and p(FG) are equal, and a uniform distribution is assumed by the foreground object p(x(t)⃗⃗⃗⃗⃗⃗ |FG) = 𝑐𝐹𝐺. The pixel is part of the background if p(x(t)⃗⃗⃗⃗⃗⃗ |BG) > 𝑐𝐹𝐺, thus cGF is the threshold value.  The training set to estimate the background model is assumed as 
	independent and represented by 𝒳, the background model is then expressed as p̅(x⃗ |𝒳,BG). 
	 
	Zivkovic modified the work proposed by Stauffer & Grimson (1999).  The later authors created a robust adaptive tracking system to handle variations in lighting due to illumination.  The modified algorithm updates the training set.  At time t, 𝒳={X(t),…,xt−T}, for an adaptation period T.  The estimated density for M components is then: 
	 
	p̅(x⃗ |𝒳,BG+FG)=∑πm𝒳̅̅̅̅̅̅̅(x⃗ ;μm⃗⃗⃗⃗⃗ ̅̅̅̅,σm⃗⃗⃗⃗⃗ ̅̅̅̅I)Mm=1 
	p̅(x⃗ |𝒳,BG+FG)=∑πm𝒳̅̅̅̅̅̅̅(x⃗ ;μm⃗⃗⃗⃗⃗ ̅̅̅̅,σm⃗⃗⃗⃗⃗ ̅̅̅̅I)Mm=1 
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	p̅(x⃗ |𝒳,BG+FG)=∑πm𝒳̅̅̅̅̅̅̅(x⃗ ;μm⃗⃗⃗⃗⃗ ̅̅̅̅,σm⃗⃗⃗⃗⃗ ̅̅̅̅I)Mm=1 
	p̅(x⃗ |𝒳,BG+FG)=∑πm𝒳̅̅̅̅̅̅̅(x⃗ ;μm⃗⃗⃗⃗⃗ ̅̅̅̅,σm⃗⃗⃗⃗⃗ ̅̅̅̅I)Mm=1 
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	where μ1⃗⃗⃗⃗ ̅̅̅…μM⃗⃗⃗⃗⃗ ̅̅̅̅ and σ1⃗⃗⃗⃗ ̅̅̅…σM⃗⃗⃗⃗⃗ ̅̅̅̅ are estimated means and variances, I is the identity matrix and πm̅̅̅̅  are the mixing weights. 
	 
	Figure 4 shows the separation of the foreground from the background using GMM. 
	 
	 
	Figure
	Figure 4. Background subtraction using Gaussian Mixture Model  
	 
	3.1.1 Contouring 
	 
	Contours in image processing represent the curve joining the points that are continuous and have the same intensity or color (see Figure 5).  In this work, we used contouring to delineate the objects that were separated from the background using the GMM. 
	 
	 
	Figure
	Figure 5. Background subtraction and contouring 
	 
	 
	In OpenCV, the contour method stores the coordinates of the boundaries of the image with the same intensity (x, y).  Different approximation methods can be used to generate the contours from the image after BS. 
	 
	To reduce computer memory usage, we employed OpenCV “CHAIN_APPROX_SIMPLE.”  This approximation method does not save all the coordinates that belong to the boundary; it removes redundant points to compress the contour.  Figure 6 shows the endpoints of the horizontal and vertical segments. 
	 
	 
	Figure
	Figure 6. OpenCV Contour approximation method 
	 
	We used the bounding rectangles to create the contours using the top-left coordinate (x,y), width and height. 
	 
	3.1.2 Database creation 
	 
	The detection of the moving objects from the video streams allowed us to construct a database of images of cars and trucks.  After applying background subtraction and contouring, the coordinates of the bounding rectangle of the detected objects where subtracted from the video stream.  Each contour was collected as an independent image in the database.  Afterwards, a manual classification was made to separate the objects in their respective category (see Figure 7). 
	 
	A total of 2432 images were collected for cars and 1598 for trucks.  
	 
	Figure
	Figure 7. Database generation after background subtraction and contouring 
	 
	3.2 Vehicle classification  
	 
	Our classification framework is presented in Figure 8.  The images used for training were collected from: 
	 
	1. 3D Object Representations for Fine-Grained Categorization Jonathan Krause, Michael Stark, Jia Deng, Li zei-Fei 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013. 
	1. 3D Object Representations for Fine-Grained Categorization Jonathan Krause, Michael Stark, Jia Deng, Li zei-Fei 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013. 
	1. 3D Object Representations for Fine-Grained Categorization Jonathan Krause, Michael Stark, Jia Deng, Li zei-Fei 4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013. 


	 
	2. MIOvision Trac Camera Dataset (MIO-TCD): http://tcd.miovision.com/, under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 
	2. MIOvision Trac Camera Dataset (MIO-TCD): http://tcd.miovision.com/, under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 
	2. MIOvision Trac Camera Dataset (MIO-TCD): http://tcd.miovision.com/, under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 


	 
	3. Images from our database (as discussed in subsection 3.1.2). 
	3. Images from our database (as discussed in subsection 3.1.2). 
	3. Images from our database (as discussed in subsection 3.1.2). 


	 
	In total, we used 11,000 images for cars and 5,602 images for trucks.  We used half of the images for training and the other half for evaluation of the accuracy of the trained models. 
	 
	 
	 
	Figure
	Figure 8. Classification scheme 
	To train the classifiers, high-performance computers were required.  The Hyperion cluster with a Big Data node with 1.5 TB RAM at the University of South Carolina was used. 
	 
	3.2.1 Cascade classifiers 
	 
	Cascade classifiers (CC) are a case of ensemble learning using several classifiers, where the information of one classifier is used to inform the next classifier.  Each of the stages is composed of a set of weak learners (Heitz et al., 2009). 
	 
	Object detection in CC is made by locating a window over an image and using a set of features in each stage and establishing if the location of the window corresponds to a positive or a negative.  A positive indicates that the object was found in the image and a negative indicates the contrary.  If the window is classified as a negative, the classification of the current region ends; if there is a positive classification, the specific area passes to 
	the next stage of classification.  Figure 9 shows the cascade system in the classifier.  The final positive decision of the classifier is given when all the stages come to a positive result, which means that the object was detected. 
	P
	P
	Figure
	Figure 9 Schematic detection cascade (adapted from Viola, 2001) 
	P
	P
	Each stage in the cascade should have a low false negative rate to work well, and at the same time, have a relatively high false positive rate.  False positive means that the cascade has labeled a window as positive that does not contain the object of interest. 
	P
	Cascade methodology uses a set of positive and negative images.  The number of images was selected in a way such that they can provide a sufficient number of images to the selected number of stages.  A low number of stages could result in a weak trained classifier, whereas a high number of stages would require a higher number of images for training. 
	P
	Both positive and negative images for each of the vehicle classes (cars and trucks) were used to train the classifiers.  Negative images do not contain the object of interest (see Figure 10).  A total of 15,157 negative images were used. 
	P
	Figure
	Figure 10. Negative images for cascade classifiers 
	P
	In this project, two cascade-based classifiers were trained, Haar-like features and Local Binary Patterns.  The schemes of these classifiers are the same; however, the construction of the integral image, or features, is different. 
	P
	Haar-like features 
	P
	Haar-like features are digital image characteristics developed by Viola & Jones (2001) to detect objects from images by using specific features or structures of the object to be detected. This technique analyzes rectangular regions surrounding a specific pixel location and adds the pixel intensities in each area (see equation 3).  The rectangular features are obtained using a version of the actual image, which is called integral Image. The integral image II(x,y) is obtained by adding the pixels above and to
	P
	II(x, y) = ∑I(x', y')x'≤x; y'≤y 
	II(x, y) = ∑I(x', y')x'≤x; y'≤y 
	II(x, y) = ∑I(x', y')x'≤x; y'≤y 
	II(x, y) = ∑I(x', y')x'≤x; y'≤y 
	II(x, y) = ∑I(x', y')x'≤x; y'≤y 

	TD
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	where II(x’, y') is the original image.  Using: 
	P
	s (x, y) = S(x,y-1)+I(x, y) II(x,y) =II(x−1,y)+S(x,y) 
	s (x, y) = S(x,y-1)+I(x, y) II(x,y) =II(x−1,y)+S(x,y) 
	s (x, y) = S(x,y-1)+I(x, y) II(x,y) =II(x−1,y)+S(x,y) 
	s (x, y) = S(x,y-1)+I(x, y) II(x,y) =II(x−1,y)+S(x,y) 
	s (x, y) = S(x,y-1)+I(x, y) II(x,y) =II(x−1,y)+S(x,y) 

	TD
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	P
	the integral image can be computed.  S(x, y) is the row sum, s (x, -1) = 0 and II(-1, y) = 0. Figure 11 shows the general scheme of the integral image computation. 
	P
	Figure
	P
	P
	P
	Figure 11. Integral image in Haar-like classifiers, (adapted from Johnson 2015) Figure 12 shows an example of the rectangular features in car detection.  Considering that some areas of the vehicle are darker than others, the Haar-like feature is composed of two rectangular areas. 
	P
	P
	Figure
	P
	P
	Figure 12. Haar Features in car detection (adapted from Wen et al., 2015) A cascade classifier using Haar-like features has the structure presented in Figure 13. The generated features are created and evaluated inside the stages of the cascade. 
	P
	P
	Figure
	P
	P
	P
	P
	P
	Figure 13. Cascade classifier using Haar-like features (left image adapted from Negri et al., 2007) Local Binary Patterns The Local Binary Patterns (LBP) is an operator that summarizes the structure of an image by comparing the value of each pixel with the surrounding pixel values.  When the current pixel value is equal or higher to the value of its neighbor, the operator assigns a value of 1. When it is not, the value assigned is 0 (Ojala et al., 2000, 2002).  The mathematical representation of the LBP ope
	P
	LBP(xc,yc)=∑2PS(ip−ic)P=1P=0
	LBP(xc,yc)=∑2PS(ip−ic)P=1P=0
	LBP(xc,yc)=∑2PS(ip−ic)P=1P=0
	LBP(xc,yc)=∑2PS(ip−ic)P=1P=0
	LBP(xc,yc)=∑2PS(ip−ic)P=1P=0
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	where: 
	P
	𝑆 = {1 → 𝑥≥ 00 → 𝑒𝑙𝑠𝑒
	P
	Figure 14 summarizes the steps in the construction of the integral image using LBP. 
	P
	P
	Figure
	P
	P
	P
	Figure 14. Local Binary Patterns Transformation (adapted from Kyrkou 2017) The LBP code computed the LBP function over different areas of the image.  In this manner, the final operator detects microstructures in the image, such as edges, or spots. The integral image has a histogram for each one of the n regions that divide it. The final feature vector was obtained by concatenating the histograms of all regions (OpenCV, 2014).  
	P
	3.2.2 Convolutional Neural Networks 
	P
	Artificial Neural Networks (NN) are computing systems that mimic the connections of the human brain.  Biological neurons are simulated using different Activations Functions (AF) whose primary purpose is to activate or “switch on” different states when an input value is given.  Similar to the human brain, the neural networks have hierarchical connections, where the outputs of the neurons become the input of other neurons.  The different levels of bonds, in more technical terms, can be referred to as layers, 
	P
	The weighted inputs of the NN are added and evaluated in the AF inside the nodes.  The weights are real values multiplying the input values, which change with the learning process to determine the output of the nodes.  The sum of the weighted inputs also contains a “bias” term that adds flexibility to the AF. 
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	Figure
	P
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	P
	Figure 15. Structure of a three-layer NN Like Haar-like features and LBP, different types of NN have been used in computer vision systems for object recognition using feature-based approaches (Egmont-Petersen et al., 2002; Rowley et al., 1998; Li et al., 2015) Convolutional Neural Networks (CNN) is a subclass of NN. The input layer in the NN contains information about the image, and small regions of these are connected to additional layers inside the NN.  Feature maps of these regions are created in a proce
	P
	P
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	Figure
	P
	P
	P
	Figure 16. Structure of a CNN (adapted from Patel & Pingel, 2017). In a CNN, the convolution is also known as the moving filter.  For example, in Figure 17, the moving filter is mapping a 2x2 region of the input image.  The output node is obtained by multiplying 0.5 to each node value (weights) and adding the results. 
	P
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	P
	Figure 17. Moving filter in a CNN (adapted from “Adventures in machine learning”, 2017) Pooling is also a moving window technique that can help to reduce the size of the CNN and to make the features invariant to scale or orientation.  During the pooling, instead of using weights, a statistical function is applied to the values of the window.  For instance, max pooling refers to the selection of the maximum value.  Figure 18 shows a full CNN structure. 
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	Figure
	Figure 18. Full CNN structure 
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	CHAPTER 4 
	Implementation and Results 
	P
	The image preprocessing was implemented using Python v3.6 and the OpenCV library. The training of the classifiers was also performed using Python v3.6.  The CNN was developed using TensorFlow library (Abadi et al., 2016). 
	P
	4.1 Background subtraction and Contouring 
	P
	Before BS, Gaussian blur was applied to the frames extracted from the video recordings. The purpose was to smooth out the images and reduce, as much as possible, the noise generated by the camera movement.  The Gaussian filter combines the input points with a Gaussian kernel, adds them and produces an output array (Szeliski, 2010).  The Gaussian kernel in two dimensions is expressed as 
	P
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	P
	After smoothing the image, the background subtraction procedure (see Sec 3.1) was applied.  The resulting foreground images of the moving vehicles were subject to two additional morphological transformations, namely, erosion and dilation. 
	Using erosion, the boundaries of the foreground object were eroded using a 2D convolutional kernel.  The original image (after background subtraction) was transformed, by assigning a value of 1 to the areas that under the kernel (window) have at least one pixel value of 1.  If not, the value is eroded (give a zero value). 
	Applying this technique, small white dots in the original image (left image in Figure 20), associated with noise were removed (right image in Figure 19), and objects that appeared to be joined are detached. 
	P
	P
	Figure
	Figure 19. Background subtraction (a), Erosion (b) 
	P
	Dilation is a technique that increases the white region of the foreground object.  A pixel value is 1 if, under the kernel, at least one pixel value is 1.  In this manner, we assembled separate parts of the objects by increasing the area of the separated regions and without 
	the presence of the noise.  Figure 20 shows the effect of increasing dilation of the foreground objects. 
	P
	.
	Figure
	Figure 20. Erosion (a), Dilation (b) 
	P
	The contouring of the dilated objects was performed using the methods described in section 3.1.1, after dilation of the foreground objects.  Given that the foreground shapes are connected to, or may be inside others, the contours have a hierarchy that determines if it is a child or a parent.  This consideration was accounted for in our contour retrieval. 
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	Table 1. Detection in the first 20 frames of video recording 
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	We evaluated the detection scheme for the first 20 frames of a video recording as shown in Figure 21.  It is important to note that the detection is likely of the same foreground objects, given that the number of frames is very small.  For the total number of elements in each frame, the average percentage detection rate was of 93% (Table 1). 
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	Figure 21. Contours in frames 3 and 11 The algorithm developed for background subtraction and contouring follows the general procedure presented in Figure 22. 
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	Figure 22. Pre-processing scheme
	Figure

	 
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	P
	4.2 Classifiers 
	P
	4.2.1 Haar-like and LBP input parameters 
	P
	The images used to train the Boosted classifiers (LBP and Haar) have the following sizes per class: 
	P
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	The parameters of the Haar-like and LBP algorithms are the following: 
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	Type of boosted classifier
	: GAB (
	Gentle AdaBoost)
	 

	P
	Span
	Minimal desired hit rate for each stage of the classifier
	: 0.995
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	Span
	Maximal desired false alarm rate for each stage 
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	: 0.5
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	Specifies whether trimming should be used and its weight
	: 0.95
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	4.2.2 CNN input parameters 
	P
	The images used to train the CNN are required to have the same dimension, independent of its classification.  Considering that it is convenient to maintain the aspect-ratios of the different vehicles as a property for classification, the images were cropped as follows: 
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	We created 32, 5x5 convolutional filters + ReLU activations.  Our CNN was composed of two layers.  The first layer had 56 x 56 nodes, and a 2X2 window was used to apply max pooling operations using a stride of 2.  The second layer had the same structure but with 
	64 filters.  The fully connected layer contained 12,544 nodes, and the hidden layer 1,000 nodes.  The output layer contained two classes of vehicles, cars and trucks. 
	P
	The test of the accuracy of our training model is presented in Figure 23. The accuracy achieved with CNN was 97%. 
	P
	P
	Figure
	Figure 23. CNN Accuracy graph 
	P
	4.2.3 Evaluation of the classifiers 
	P
	The Haar-like, LBP and CNN models were tested in a batch containing 5,500 images for cars and 2,801 images for trucks.  The results are presented in Table 2.  Note that the sum of the “Cars” row is 5,500 and the sum of the “Trucks” row is 2,801.  Among 5,500 cars, the LBP classifier identified 5,162 of them correctly, Harr-like classifier 5,418 and the CNN classifier 5,437.  Similarly, among 2,801 trucks, the LBP classifier identified 1,478 correctly, Haar-like classifier 1,711 and the CNN classifier 2687. 
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	Table 2. Accuracy evaluation of the different classifiers 
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	As shown in Table 2, the CNN classifier yielded the highest accuracy rate among the trained classifiers.  The ability of the CNN classifier to correctly identify cars and trucks is demonstrated in Figure 24. 
	P
	P
	Figure
	Figure 24. Demonstration of CNN classifier on SCDOT-recorded video
	P
	CHAPTER 5 
	Conclusions 
	P
	The results of this research showed that background subtraction using Gaussian mixture had an accuracy rate of 93% in detection, which indicates that the algorithm successfully detected most of the moving objects.  The high accuracy rate is also due to the use of erosion and dilatation.  Moreover, by tracking objects through successive frames, counting accuracy is further improved. 
	P
	The LBP classifier had a 93.9% accuracy rate in classifying cars.  However, the accuracy rate for trucks was only 52.8%.  The results obtained for Haar-like feature classifier also showed an excellent classification rate for 98.5%.  Its classification of trucks (61.1%) is better than the LBP classifier.  It is very likely that the cascade classifiers may have a higher classification rate for cars not because the critical features for cars were correctly developed, but rather it is due to the misclassificati
	P
	Contrary to the cascade classifiers, CNN was able to achieve a remarkable accuracy rate for both classes, 98.9% for cars and 95.9% for trucks.  These results indicate that CNN is the best classifier among those evaluated and has the best potential to detecting and classifying multiple vehicle classes and other transportation modes (i.e., pedestrians, bicyclists). 
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